Logarithm In Terms of Von Mangoldt Function
Theorem
\[ \ln(n) = 1 \ast \Lambda(d) = \sum_{d \mid n} \Lambda(d)\]
where \(\Lambda\) is the von Mangoldt function and \(\ast\) is the Dirichlet convolution.
Proof
Let \(n = p_1^{\alpha_1} \dots p_k^{\alpha_k}\) as per the fundamental theorem of arithmetic. Then we have that
\[\begin{align*}
\sum_{d \mid n} \Lambda(d) &=
\sum_{d \mid n} \left\{\begin{matrix}
\ln(p) & d = p^k \ \text{for some}\ k \geq 1 \\
0 & \text{otherwise} \\
\end{matrix} \right\} \\
&= \sum_{i = 1}^k \sum_{j = 1}^{\alpha_i} \ln(p_i) \\
&= \sum_{i = 1}^k \alpha_i \ln(p_i) \\
&= \sum_{i = 1}^k \ln(p_i^{\alpha_i}) \\
&= \ln\left(\prod_{i = 1}^k p_i^{\alpha_i}\right) \\
&= \ln(n). \\
\end{align*}\]